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More icosahedral fulleroids
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The discovery of the famous fullerene has raised an interest in the study of other can-
didates for a modeling of carbon molecules. Motivated by a P. Fowler’s question Delgado
Friedrichs and Deza definedI (a, b)-fulleroids as cubic convex polyhedra having onlya-gonal
andb-gonal faces and the symmetry groups isomorphic with the rotation group of the regular
icosahedron. In this note we prove that for everyn � 8 there exist infinitely manyI (5, n)-
fulleroids. This answers positively questions posed recently by Delgado Friedrichs and Deza.
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1. Introduction

Cubic convex polyhedra are good models for carbon molecules. These models
have the following structure: atoms of the carbon are the vertices of such polyhedra and
edges of these polyhedra realise bonds between pairs of atoms. With every carbon atom
four bonds are associated but the polyhedron is cubic (i.e., every its vertex is trivalent).
This means that along one edge at each vertex a double bond has to be realized. This is
possible because the graph of every cubic convex polyhedron (i.e., the structure defined
by vertices and edges of the polyhedron) has a 1-factor (or, equivalently, a perfect match-
ing or a Kekulé structure) as proved by Petersen’s theorem [1], or also [2]. In fact, as
shown by Klein and Liu [3,4], every cubic convex polyhedron has at least three mutually
disjoint 1-factors. Along edges of this 1-factor double bonds can be realized.

The discovery of the famous fullereneC60 in 1985 [5] has raised an interest in
the study of other candidates for modelling of carbon molecules. Patrick Fowler in
1995, see [6,7], asked whether a fullerene-like structure with 260 vertices consisting of
pentagons and heptagons (7-gonal faces) only and exhibiting an icosahedral symmetry
could exist. The answer was given by Dress and Brinkmann [7]. The question of Fowler
will be generalized later in this note.

First, we introduce some definitions. Ap-vector (or a face-vector, cf. [8,9]) of
a cubic, convex polyhedronP is a sequence{pi(P ), i � 3}, wherepi(P ) denotes
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the number ofi-gonal faces ofP . The famous Euler’s polyhedral formula yields the
following relation for terms of thep-vector

3p3(P )+ 2p4(P )+ p5(P ) = 12+
∑

j�7

(j − 6)pj (P ). (1)

The problem to characterize which sequences of nonnegative integersp = {pi, i � 3}
can bep-vectors of convex polyhedra is a classical problem of Eberhard [21] (cf. [8]).
A characterization of such sequences can be found in [9].

Delgado Friedrichs and Deza [6] introduced the following definitions. Afulleroid
is a cubic convex polyhedron. A�-fulleroid is a fulleroid which has the group� as its
symmetry group. In particular, anI -fulleroid is a fulleroid which has its symmetry group
isomorphic with the rotation group of the regular icosahedron while anIh-fulleroid is one
having its symmetry group isomorphic to the full symmetry group of the regular icosa-
hedron (including inversion, reflections, and improper rotations). A given�-fulleroid F
is of type(a, b) or a�(a, b)-fulleroid if pi(F ) is nonzero only fori ∈ {a, b}. Leta = 5.
The caseb < 5 is not possible. Fora = b = 5, the only possibleIh(5,5)-fulleroid is
the dodecahedron. The case(a, b) = (5,6) is the classical fullerene case.

We say that an�(a, b)-fulleroid is smallestif it has the smallest possible number
of vertices. Note that (1) points that the relation between the numberspa andpb in
an�(a, b)-fulleroid is linear. This further implies thatv, the number of vertices, is a
linear function of any of them. Therefore we can use any one of these three quantities to
measure the size of an�(a, b)-fulleroid. However forI (5, n)-fulleroids, it will turn out
to be most convenient to usepn.

Dress and Brinkmann [7] have found two fulleroids with 260 vertices, one is the
smallestI (5,7)-fulleroid and the second is the smallestIh(5,7)-fulleroid, and proved
that neither otherI (5,7)-fulleroid nor otherIh(5,7)-fulleroid on 260 vertices exists.
Delgado Friedrichs and Deza [6] have found the smallestIh(5, n)-fulleroids for n =
8,9,10,12,14,15, and asked the following questions regardingI (5, n)-fulleroids:

• Is there at least oneI (5, n)-fulleroid for eachn > 6?

• Is there at least oneI (5, n)-fulleroid for infinitely manyn > 6?

• Is there an infinite series ofI (5, n)-fulleroids for each–infinitely manyn > 6?

• For whichn is there at least oneI (5, n)-fulleroid realizing the smallest possible
p-vector?

• For whichn is this smallestI (5, n)-fulleroid unique?

The aim of this note is to answer positively the first three questions forn � 8 and
bring a partial answer to the fourth. Namely, the main result of this note is the following.

Theorem 1. Let n � 8 andm � 1 be integers. There is anI (5, n)-fulleroid F(m) with
pn(F (m)) = 60m.

Applying elementary group theory one can easily observe the following.
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Theorem 2 [6,10,11]. In anI -fulleroid there is at most one orbit of faces with rotational
s-fold symmetries,s = 2,3,5, respectively. These orbits, if existent, contain exactly 30,
20 and 12 faces, respectively. All the other orbits have exactly 60 faces each. The face
sizes of the first three orbits are of the size 2t,3t and 5t , respectively,t being a positive
integer. Faces of the other orbits can have any size.

Applying these two results we immediately have a partial answer to the fourth
question.

Theorem 3. If n is an odd integer,n �≡ 0 (mod 3), andn �≡ 0 (mod 5) thenF(1) is the
smallestI (5, n)-fulleroid.

2. Preliminaries

The following theorem of P. Mani [12] (see also [13]) plays a very important role
in our proofs.

Theorem 4. To every finite 3-connected plane graphH there is a convex polyhedronP
such that the graph ofP is isomorphic toH and the symmetry group ofP is isomorphic
to the automorphism group ofH .

Clearly,pk(H) = pk(P ) for everyk � 3. Due to Mani’s theorem it is enough
to construct cubic 3-connected plane graphs which have pentagonal andn-gonal faces
and the automorphism groups isomorphic to the groupI of rotational symmetries of the
icosahedron.

We begin by defining certain configurations and transformations that is, graphs
which can occur as induced subgraphs in graphs ofI (5, n)-fulleroids.

1. For all t � 1 we shall use the graph denoted byDt in [14] and defined as
follows: Let D1 be as shown in figure 1 and fort � 2 let Dt be the graph
obtained fromDt−1 andD1 by identifying the edgeX2Y2 of Dt−1 with the edge
X1Y1 of D1 and then deleting these labels. The boundary of the exterior face of
Dt has 5t edges between successive 2-verticesX1, X2 andY1, Y2. The interior

Figure 1. ConfigurationD1.
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Figure 2.

Figure 3.

faces ofDt are all 5-gons and the number of verticesv(Dk) of Dk is 20t . Let
us call theD1 so added to be thet th compound ofDt . Note thatD1 is centrally
symmetric about the center of the edgeB1B1 (denoted in figure 1 by a small
diamond).D2t+1 has 2-fold rotation about to the central point of theB1B1 edge
of the (t + 1)st compound ofD2t+1 andD2t has 2-fold rotation according the
center of the “former”X2Y2 edge of thet th compound.

2. In figure 2 there is a transformationπ which enlarges the size of faces neighbour
to the pentagonal face by 1. Notice that the graph on this figure admits a 5-fold
rotation.

3. Figure 3 shows a transformationρ which replaces a 3-vertexA with a configu-
ration consisting of nine 5-gons. The graph on this figure admits 3-fold rotation
around the vertexA.

4. A configurationK, a chain of four pentagons as in figure 4 (do not consider the
dashed lines), plays a very important role in our construction.

This configuration is centrally symmetric (posses a 2-fold rotation) about the
point C, at the middle point of the edgeB1B

′
1 (a small diamond in figure 4). We
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Figure 4.

Figure 5.

use this configuration to receive a pair of requiredm-gons,m � 6. We proceed
in the following way: We placem − 5 different vertices on the segmentB1C of
the edgeB1B1 (none of them coincides with the pointC) andm − 5 different ver-
tices on the edgeD1D2 then we place the images, with respect to the 2-fold rotation
about to centerC, of placed vertices on the segmentB ′1C of the edgeB1B

′
1 and the

edgeD′1D
′
2.

In the next step we insert 2(m − 5) edges joining the vertices added so that the
pentagons incident with the edgeB1B

′
1 are divided into 4(m − 5) new pentagons, and

the configuration obtained again possesses a 2-fold rotation. (See figure 5 with dashed
lines for the casem = 7.) Notice that the resulting configuration again contains a
configurationK, it is a chain of four pentagons with the edge having the pointC as its
center. This new configurationK can be used for receiving the next pair of twom-gons
in the same way as described above.

Note.Let us notice that also each configurationDt contains a configurationK.
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Figure 6.

Figure 7.

3. Proof of theorem 1

Our construction begins with two graphsP0 andQ0. The graphP0 is obtained
from the icosahedron in the following way. Each of its 5-faces is split into one new
5-faceα and six new 6-faces as shown in figure 5. It is easy to see that the automorphism
group of the resulting graphP0 is the rotation group of the icosahedron. The (original)
verticesA are poles of 3-fold rotations (denoted in figure 5 by small triangles), the
centers of 5-faces are poles of 5-fold rotations (marked in figure 5 by a small pentagon)
and the middle points of theBB-edges are poles of 2-fold rotations (marked by small
diamonds). In the construction we distinguish five cases. The graphQ0 is also obtained
from the icosahedron by splitting each of its 5-faces with one new 5-face, five octagons
and twenty “half faces” as shown in figure 6. The graphQ0 has 60 octagons, 30BB-
edges which are involved into 30K-configuration. It is easy to see that (similarly as in
the graphP0) the graphQ0 has the same rotations as the icosahedron (but has no plane
symmetries).

Case1. If n = 6+ 5t , t � 0, then the construction continues by replacing each
edgeBB of P0 by the configurationDt as in figure 7.
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Figure 8.

The result is anI (5, n)-fulleroid P1 with pn = 60 and if t � 1, 30 configura-
tionsK. Note that here and in the sequelD0 means that no replacement of the edgeBB
is performed.

Case2. If n = 7+ 5t , t � 0, first we construct anI (5, n − 1)-fulleroid P1 as in
case 1. Then the transformationπ is used on each pentagon [CCCCC] of P1 which has
been present already inP0. The result is a requiredI (5, n)-fulleroid P2 with 60n-gonal
faces and, ift � 1, 30 configurationsK.

Case3. Let n = 8 + 5t , t � 0. Our construction starts with the graphQ0 in
which each edgeBB is replaced by the configurationDt as in figure 7. The result is an
I (5, n)-fulleroidQ1 with pn = 60 and 30 configurationK.

Case4. If n = 9 + 5t , t � 0, we first construct anI (5, n − 1)-fulleroid Q1

as in the case 3. Then the constructionπ is applied to each pentagon ofQ1 which is
crossed with an axis of a 5-fold rotation. The resulting graphQ2 has 60n-gons and 30
configurationsK.

Case5. If n = 10+ 5t , t � 1, we first construct anI (5, n − 3)-fulleroid P2 as
in the case 2 and then the transformationρ is applied to each 3-vertex which has been
presented in already inP0. The result is a requiredI (5, n)-fulleroid P4 with 60n-gonal
faces and 30 configurationsK. Fort = 0 our construction begins with the dodecahedron
whose 5-faces are splitted as indicated in figure 8. The result is anI (5,10)-fulleroidQ3

with p10 = 60 and 30 configurationsK.
Note that our construction has been led in such a way that all 30 configurationsK

are in the same orbit of the icosahedral group of the graphPi, i = 1,2,3, and of the
graphQj, j = 0,1,2,3. We shall keep this property also in the next constructions of 60
newn-gonal faces which we create in pairs by the construction described in the previous
part using these 30 configurationsK.
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4. Remarks

1. In our proof of theorem 1, case 2 witht = 0, we obtain the smallestI (5,7)-
fulleroid described in [7]. A little modification of our construction (a use a generalization
of the configurationK) leads to infinitely manyI (5,7)-fulleroids. Infinite series of
Ih(5,7)-fulleroids can be obtained using ideas of Delgado Friedrichs and Deza [6].

2. The problem to investigatep-vectors of�-fulleroids has been first formulated
by Jucovǐc [15] in seventieth but in a different language; see also Trenkler [16] where
p-vectors of 4-valent polyhedra with prescribed groups of symmetries were investigated.
A literature concerning “Eberhard-type theorems” for the chemical relevant subclass of
cubic convex polyhedra is rather extensive. The reader is reffered, e.g., to Klein and
Liu [3,4] and Liu et al. [17] and the references therein.

3. The question of Fowler’s can be generalized in the following way: Let�(a, b)-
fulleroids be�-fulleroids having onlya-gonal andb-gonal faces. For a list of all groups
of symmetries that can act on convex polyhedra, see, e.g., Coxeter and Moser [11], or
a recent book [18] by Cromwell. For symmetries on fullerenes see the papers by Babić
et al. [19], and Fowler et al. [20].

Problem. Characterize�(a, b)-fulleroids for all possible pairs of parameters(a, b) and
all possible groups of symmetries�.
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